Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Natural Product Sciences ; : 259-262, 2016.
Article in English | WPRIM | ID: wpr-146019

ABSTRACT

The content analysis of fatty acids in Perilla cultivars and commercial oils is conducted through gas chromatography with a flame ionization detector. Results show that Perilla cultivars, such as Deulsaem and Daesil, contain high amounts of α-linolenic acid (262.22 and 261.97 mg/g, respectively). Among commercial oils, Perilla oil contains a higher amount of α-linolenic acid (515.20 mg/g). Accordingly, α-linolenic acid is a major fatty acid of Perilla cultivars and oil. Therefore, Perilla cultivars could be used as a food supplement for nutritional and pharmaceutical purposes.


Subject(s)
Chromatography, Gas , Dietary Supplements , Fatty Acids , Flame Ionization , Industrial Oils , Perilla
2.
Biomolecules & Therapeutics ; : 338-345, 2016.
Article in English | WPRIM | ID: wpr-51938

ABSTRACT

Neurodegenerative diseases are often associated with oxidative damage in neuronal cells. This study was conducted to investigate the neuro-protective effect of methanolic (MeOH) extract of Perilla frutescens var. japonica and its one of the major compounds, rosmarinic acid, under oxidative stress induced by hydrogen peroxide (H2O2) in C6 glial cells. Exposure of C6 glial cells to H2O2 enhanced oxidative damage as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and thiobarbituric acid-reactive substance assays. The MeOH extract and rosmarinic acid prevented oxidative stress by increasing cell viability and inhibiting cellular lipid peroxidation. In addition, the MeOH extract and rosmarinic acid reduced H2O2-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcriptional level. Moreover, iNOS and COX-2 protein expression was down-regulated in H2O2-indcued C6 glial cells treated with the MeOH extract and rosmarinic acid. These findings suggest that P. frutescens var. japonica and rosmarinic acid could prevent the progression of neurodegenerative diseases through attenuation of neuronal oxidative stress.


Subject(s)
Cell Survival , Cyclooxygenase 2 , Hydrogen Peroxide , Lipid Peroxidation , Methanol , Neurodegenerative Diseases , Neuroglia , Neurons , Nitric Oxide Synthase Type II , Oxidative Stress , Perilla frutescens , Perilla
SELECTION OF CITATIONS
SEARCH DETAIL